Lecture 0
Software Project Estimation

Purpose: Cover basic concepts and practices for software project estimation

What is Estimation? Spec → Effort + Schedule + Cost

Poor Estimation is Common
- Bias -- overly optimistic about self, others
- Ill-defined estimation process
- Lack of experience
- Pressure to please (say what is expected by management)
- Lack of historical data on which to base estimate
- Misuse of estimation models

Estimation Principles
- Employ multiple estimators
- Use multiple techniques
- Require justification (basis of estimate) for each estimation
- Employ mathematical or facilitated process to combine multiple estimates
- Associate probabilities with estimates

Software Productivity
- Five Major Factors [Basili ’78]
 - People -- size and expertise of individuals, teams
 - Problem -- specific project requirements, application domain
 - Process -- software management and development methods
 - Product -- complexity and required qualities of the product (reliability)
 - Resources -- facilities and environment used by developers

- The BIG 29 [Walston & Felix, ’77]

- Empirical Models reflect specific projects, experiences, applications
 Beware of empirical models -- human/organizational behavior is highly variable

Estimation Life Cycle

1. Problem/Need Statement
 - Fuzzy requirements
Limited opportunity to clarify requirements
- Origin of uncertainty

2. **Scope problem**
- Imperative to state assumptions
- Sketch solution proposal
- Assume operating and user environment
- Disclaimers about boundaries

3. **Estimate size**
- Effort is proportional to size
- Cost models are exponential: \(\text{Effort} = A \times \text{Size}^B \), for constants \(A, B \).
- **Size Measures**
 - Source Lines of Code (SLOC) -- universal measure
 - Function Points (measure of inherent capability delivered by software)
 - Uncertainty about SLOC initially high, decreases over life cycle
 - FP known earlier in life cycle
 - FP \(\rightarrow \) SLOC conversions known based on languages

- **Estimation Techniques**
 - Experience is paramount
 - Project history database essential
 - component and whole-project development data
 - technical software metrics
 - project metrics

- **Decomposition Techniques**
 - Software decomposition tree
 - Granularity depends on available time, experience, historical data on hand
 - Assign size (or effort) estimate to component or decompose further
 - Assemble estimate from leaves of decomposition tree
 - Adjust estimate to account for integration of components higher in tree

- **Analogy Techniques**
 - Locate historical data on similar components
 - Adjust estimate for differences to historical component

- **Consensus Building**
 - Delphi method -- anonymous estimation with facilitated variance reduction
 - Weighted averaging: expected = \([\text{LO} + 4 \times \text{AVG} + \text{HI}] / 6 \)
4. Estimate effort and optimal schedule/duration
 - Process
 - Select cost model based on
 - size metric
 - project type
 - Apply cost model
 - Refine model parameters
 - Repeat estimate
 - Walston & Felix Cost Model
 - empirical model from 60 projects (29 project characteristics)
 - Effort: \(E = 5.2 \times L^{0.91} \)
 - Duration: \(D = 4.1 \times L^{0.36} = 2.47 \times E^{0.35} \)
 - Staff Size: \(S = 0.54 \times E^{0.06} \)
 - Documentation Pages: \(P = 49 \times L^{1.01} \)
 - COCOMO (Constructive Cost Model, Boehm)
 - 3 types of projects
 - Organic -- simple, small teams, experienced, familiar domain
 - Semi-detached -- moderate, mixture of skill/experience/familiarity
 - Embedded -- software embedded in hardware, little user interface. Difficult.
 - 3 levels of model
 - **Basic** model -- 2 coefficients per project type
 - **Intermediate** model -- effort estimation incorporates *effort multipliers* to account for *cost drivers* that make projects easier or harder. Different effort coefficients.
 - **Detailed** model -- not covered.
 - Basic COCOMO
 - Effort (labor months): \(E = a \times L^b \)
 - Duration (calendar months): \(D = c \times E^d \)
 - A different \((a,b,c,d)\) tuple for each project type.
 - Organic: \((2.4, 1.05, 2.5, 0.38)\)
 - Semidetached: \((3.0, 1.12, 2.5, 0.35)\)
 - Embedded: \((3.6, 1.20, 2.5, 0.32)\)
 - Intermediate COCOMO
 - 15 cost drivers (project characteristics) that may adjust effort
 - Each cost driver become multiplier in range 0.9-1.4
 - Product of all cost drivers provides *effort adjustment factor (EAF)*
 - Effort: \(E = a \times L^b \times EAF \)
Putnam Cost Model (large projects)
- \(L = C \times E^{1/3} \times D^{4/3} \),
 - \(C \): state of technology, development environment (2000-11000),
 - \(D \): duration (calendar years),
 - \(E \): effort (labor years),
- \(E = L^3 / (C^3 \times D^4) \)

Warning: Do not over compress the schedule: minimum duration.
- Small extension to schedule can yield large savings in effort
- Conversely, small compressions can drastically increase effort.
- Boehm: *There exists a limit beyond which a project can not reduce schedule by buying more personnel and equipment. This limit occurs at ~ 75% of nominal schedule.*

Use Putnam model to check for schedule sensitivity.
- Compression from \(D \) to \(2D \) => \(1/16 \)th the effort.

SLIM -- automated estimation, planning tool.
- Based on Putnam model, Norden curve
- Outputs
 - Ranges for estimates based on uncertainty factors
 - Month by month distribution of effort
- Modeler/planner capabilities
 - model calibration
 - characterization of software and project properties
 - software sizing
- Internals
 - Putnam cost model
 - PERT scheduling
 - Linear programming to satisfy/solve project constraints

ESTIMACS
- Inputs: function points
- Outputs: effort, staffing, risk, hardware capacity

5. Develop schedule
- Goal: tasks + start-date + end-date
- Approach: exploit parallelism in project activities
- Use models to give gross duration, staffing
- Work Break-Down method
 - Process breakdown vs Product breakdown
 - Separate accounting per node in the breakdown tree
- Parallelism not shown clearly
- Development Task Driven
 - Task list
 - Task precedence
 - Activity network (PERT chart)
 - Critical path
- Refine of schedule
 - revise tasks
 - revise staffing
- Present schedule as Gantt Chart

6. Establish duration
 - Goal: determine the calendar time from project start to project finish
 - Constraint: often this comes first, as a given

7. Determine cost
 - Goal: estimate the cost of following the schedule
 - Factors: Cost of money – inflation, interest on $$ borrowed to pay employees
 - Realities: Cost of MISSED SCHEDULE -- may be loss of on-time bonuses or late penalties.